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ABSTRACT

Drainage is required in many agricultural watersheds in
the southeastern United States for flood prevention and to
sustain agricultural production. These drainage
improvements often increase the severity of summer
droughts by lowering water tables. A computer simulation
model, WATRCOM, has been developed to assist in
evaluating drainage improvements and the feasibility of
using channel water level control. A finite element solution
of the Boussinesq equation coupled with water balances in
the unsaturated soil and on the surface is used to simulate
water movement in three dimensions. Varying soil types
and boundary conditions in land areas with irregular
drainage channel networks can be considered. Model
results are compared to published solutions for drainage to
parallel drains. Solutions are also presented for flow in
regions near intersecting drains and compared to solutions
in regions with parallel drains. KEYWorDSs. Drainage,
Watershed, Channels, Hydrologic modeling, Water table,
WATRCOM.

INTRODUCTION

mprovements of channel systems for drainage in
Irelatively flat watersheds in the southeastern United

States are important for flood control and management
of seasonal high water tables. The improvements consist of
deepening the channels and increasing drainage capacity.
This may lead to overdrainage during the summer months.
An alternative is the use of wide, shallow channels which
will accommodate the surface drainage needs, but will
provide very little subsurface drainage while requiring
more land area.

The use of water control structures in deep channels
allows management to insure drainage during times of
excess water and storage of some of the excess water to
reduce overdrainage during the summer months. Previous
evaluations of the benefits of these structures have been
limited to periods of excess water and to steady-state
storage of water in the channel systems.
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Approaches for describing saturated and unsaturated
water movement on a watershed scale range from detailed
numerical solutions (Freeze, 1971; Neuman, 1973) to
models for the evaluation of land resource regions such as
de Laat et al. (1981) and Querner (1984). Springer (1985)
presented a review of several saturated-unsaturated flow
models.

Freeze (1971) presented numerical methods to solve the
three-dimensional Richard’s equation for water movement
in the saturated and unsaturated soils of a watershed.
Applications of this approach were described by Freeze
(1972a, 1972b). However, the input parameters and the
computational requirements cause this approach to be
expensive and difficult for the analysis of watershed scale
systems.

Neuman’s finite element model has been used for the
analysis of two dimensional seepage. This model is an
iterative Galerkin-type finite element solution of the two-
dimensional ‘saturated-unsaturated flow equations. The
solution procedure can handle nonuniform flow regions
with complex boundaries. Neuman (1973) analyzed
transient saturated-unsaturated flow problems such as
seepage through an earth dam and seepage through a
layered hill slope cut by a ditch. The author limits his
analyses to periods on the order of less than one month.
The simulations are also limited to unsaturated-saturated
responses to either fixed boundary conditions or constant
fluxes on the boundaries. Field testing of the model was
not presented.

The approach in Neuman’s two-dimensional model has
been extended to three dimensions by Huyakorn et al.
(1986). They present six examples to verify and
demonstrate the utility of their model in situations
involving seepage faces and anisotropic media. Examples
were presented for unsaturated-saturated responses to fixed
boundary conditions or constant fluxes on the boundaries.
For a steady flow problem (simulation of a 44-day period),
the computer processor time was on the order of 177 CPU
minutes on a DEC* VAX model 11/750. Field evaluations
of the model were not presented.

The water management model, GELGAM, described by
de Laat et al. (1981) has been applied to areas in the
Netherlands for regional water resource planning.
GELGAM is a distributed deterministic hydrologic model
for the simulation of groundwater flow and
evapotranspiration in large non-homogeneous arcas. The

*Mention of trademark or vendor does not constitute a warranty or
guarantee of the product by USDA or North Carolina State University and
does not imply its approval to the exclusion of other products or vendors
that may also be suitable.
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model consists of components for saturated flow,
unsaturated flow, and surface water flow. These
components are coupled in time and the model provides
estimates of hydrologic components such as groundwater
elevations, runoff, and evapotranspiration on a regional
basis.

FEMSAT is a finite element model for considering a
saturated regional groundwater system (Querner, 1984).
The model has been used to determine the relationship
between phreatic surface and regional groundwater flow
for input into other models. An example of this was
presented by van Bakel (1986) using the simulation model
SWADRE, a version of SWATRE (Belmans et al., 1983)
and FEMSAT to evaluate subirrigation with open ditch
drainage systems.

The implementations of the theory fall short in
delivering a comprehensive simulation model that can be
used to evaluate watershed-scale water management
scenarios. The computer simulation model, WATRCOM,
was developed for analyzing saturated and unsaturated
water movement and storage in irregularly shaped drainage
districts. Effects of multiple intersecting drainage channels,
with and without channel water level control, can be
analyzed for simulation periods of 1 year. This article
describes the model and compares simulations for transient
water movement to parallel drains to published solutions.
The model was field tested using data from a watershed
scale research project and these results are presented in a
subsequent article.

MODEL DESCRIPTION

The WATRCOM model is based on a water balance in a
region or element. The saturated portion of the model is
simulated with a formulation of the two-dimensional
Boussinesq Equation. The unsaturated zone in each
element is a one-dimensional vertical water balance. The
water balances are conducted on each time step and linked
to each component by their respective boundary conditions.
A surface water balance is also conducted at each time
step. With these linkages and solution procedures,
WATRCOM can simulate three-dimensional water
movement in watersheds with shallow water tables. The
WATRCOM water balance may be expressed for any time
period, DT, as

DELSAT + DELUNS = RAIN - AET - OUTFLOW -
RO - RSTOR - PSTOR (1)

where

DELSAT = the change in the volume of water
stored in the saturated zone per unit
surface area (m),

DELUNS = the change in the volume of water
stored in the unsaturated zone per unit
surface area (m),

RAIN = the amount of rainfall per unit surface
area (m),

AET = the actual evapotranspiration per unit
surface,

OUTFLLOW = the subsurface lateral flow across the
boundaries per unit surface area (m),

RO = the amount of surface runoff from the
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region per unit surface area (m),

RSTOR = the change in potential runoff in
retention storage per unit surface area
(m),

PSTOR = the change in detention storage per

unit surface area (m).

A flow diagram is presented in figure 1.

At the start of each day, rainfall intensity (breakpoint
rainfall) and daily potential evapotranspiration (PET) are
read from input files. The method for determining PET
depends on the available weather data. The model selects
the time steps based on the weather data. On days without
rainfall, a time step of 4 h is used. A time step of 1 h is
used for the periods with rainfall and 4 h for the remainder
of the day on days with rainfall. The daily PET is
distributed over time steps without rainfall and is assumed
to be zero during periods with rainfall. At each time step, a
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Figure 1-Flow chart of the simulation model, WATRCOM.

121



water balance is performed at each node by calculating the
component terms in equation 1. The model consists of
submodels for water movement in the saturated and
unsaturated soil and overland flow on the soil surface.
Descriptions of the calculation of the terms follow.

THE SATURATED ZONE

The change in the water table elevation and the water
stored in the saturated zone, DELSAT (eq. 1), is determined
by solving the Boussinesq equation (van Schilfgaarde,
1974) for saturated flow. The equation may be written as:

f() b =(K () hh), +(K M hh) +R @

where

h = water table height above the impermeable layer
(m),

f(h) = drainable porosity, a function of h,

K(h) = lateral saturated hydraulic conductivity, a
function of h (m/d),

R = vertical recharge rate at the water table (m/d),
positive for infiltration and negative for
evapotranspiration,

X,y = horizontal position coordinates of the region
(m),

t = time (days).

Equation 2 is based on the Dupuit-Forchheimer
assumptions and neglects lateral water movement in the
unsaturated zone. The drainable porosity, f, and the lateral
saturated hydraulic conductivity, K, are functions of space
and water table height. At each time step, the water balance
in the unsaturated layers at each solution position is used to
determine the vertical recharge rate, R, at the water table.
Boundary conditions consist of zero horizontal flux on
some boundaries and specified water levels versus time in
the open channels throughout the area. If the channel
becomes dry, the boundary condition may shift to one of
zero flux. Figure 2 shows a two-dimensional schematic
representation of the saturated portion of the model.

RAINFALL PET

CHANNEL
ot [ 1 SOIL SURFACE
R
= WATER
M FLOW SATURATED
—" ZONE
— h
PR
77777 =T7T77=77777=7777  IMPERMEABLE
LAYER

Figure 2-A schematic representation of the saturated portion of the
model in two dimensions.
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The solution procedure for equation 2 is the Galerkin
finite element procedure with linear interpolation functions
(White 1985). The region is divided into triangular
elements (Norrie and de Vries, 1978). A system of
nonlinear equations representing equation 2 is derived and
the computations are simplified with two transformations.
The first is the amount of drainable soil water in the
profile, w:

h
w=] f (h) dh ?3)
0

The second transformation is the transmissivity function, T:

T=k(Mh C))
where K(h) is dependent on water table elevation and may
vary with depth and location in the region. Using equations
3 and 4, equation 2 becomes:

W, =(Th), +(T hy)y +R ®)
Finite difference methods are used to express the time
derivative, so at each time step equation 5 is a second-order

partial differential equation in the space coordinates. This
yields:

(w™*'-w™)/ DT =

G[(Tm+lhm+l) +(Tm+1hm+l) +Rm+l]
x  Jx y b

m_ m m_ m m
+(1-o) [(T70]), {{T70]), +R"] ©)
where
m = the index associated with the time step,
DT = time step (days),
o = weighting factor between time step m and m + 1,

selected between 0.67 and 1 for our problems
(o =1 is fully implicit and a = 0 is explicit).
For any time step, the terms with index m are known.
Equation 6 can be written with the unknown terms on the
left and the known terms on the right as:

Wm+1/DT _a{(Tm+1hxm+l)x +(Tm+lhym+1)y:}=
w" /DT + (1 ) [(Tm hxm)x +(Tm hym)y}
+ocRm+l+(1 <) R" M

A system of equations is assembled using the linear trial
functions over each element in the simulation region. In
matrix form, this system is (Parsons, 1987):

m+ 1 m+1 m+1 m

cw"" ' +aDTBT," h"  =r ®)
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where

C = asparse matrix of coefficients derived from the
terms involving w in equation 7,

B = a sparse matrix of coefficients obtained from the h
terms of equation 7,

T, = a vector of the current estimates of the
transmissivity at the adjacent nodes,

h = the vector of unknown nodal values,

r = the vector containing the known terms.

Newton’s method is used to solve equation 8 for h at
each node for each time step (Norrie and de Vrieg, 1978;
White, 1985). The solution is accomplished by finding h
for each node such that the function F(h) = O where F(h) is
given by:

m+1 m=1 mnq

+o DT BT, h -r ()]

m+ 1

F(h)=Cw

For Newton's procedure, an iteration sequence h9, hl,... hP
is found as follows:

b =h'+dn (10)
where dh = J-1 (hi+1) F(hi), and J is the Jacobian matrix at
the unknowns hj,;. A set of h’s at each node is assumed to
be those for which F(hi+1) is sufficiently small. The K and f
values at each iteration are based on the h found during that
iteration.

THE UNSATURATED ZONE

The model performs a one-dimensional water balance in
the vertical direction (Skaggs, 1978, 1980) at each node in
the finite element grid. At each time step, approximate
methods are used to predict the extraction of water from
the profile for evapotranspiration (ET) and the addition of
infiltrated rainfall. These balances provide the linkage to
the Boussinesq equation (eq. 2).

At the start of the simulation, the soil profile at each
node is assumed to be in hydrostatic equilibrium with the
initial water table position. The soil profile is divided into 2
cm layers. The soil water content in each layer corresponds
to a pressure head equal to the distance from the midpoint
of the layer to the water table. When the water content is
greater than the equilibrium amount, the excess is assumed
to drain to the next layer. Water may be extracted from the
root zone to satisfy ET requirements. However, the water
content in the root zone layers cannot be lowered below the
wilting point of the soil type for the node.

The balance for water extraction to satisfy ET at each
node in the area can be written as:

AET, =WSP, +UPF, +RZW, (11)
where

i = the node number in the area,

AET; = actual evapotranspiration (cm),

WSP; = amount evaporated from water ponded on
the surface (cm),

UPF; = water moving vertically from the water table
to the root zone to meet ET (cm),

RZW; = amount of water supplied from the root zone

(cm).
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Evapotranspiration is removed from the surface ponded
water first, the water table second, and the root zone last.
The amount of water moving from the water table
vertically into the root zone, UPF;, is found from the
relationship between steady vertical upward flux and water
table depth. The vertical upward flux versus water table
relationship is derived from the unsaturated hydraulic
conductivity function for each soil type (Skaggs, 1978,
1980). The vertical upward flux approximates the
maximum amount of water that can move into the root
zone in response to PET demands. If the PET is less than
this amount, then AET and UPF are set equal to the PET
amount and no water is extracted from the root zone.

If the PET is greater than UPF, then the difference
between UPF and PET is extracted from the root zone
water in a similar fashion as Skaggs (1978, 1980). The
extraction takes place layer by layer from the soil surface
downward. Water is extracted from each layer until the
available amount in the layer reaches the lower limit. The
procedure stops when all the water in the root zone has
been depleted or the PET demand is met. AET will be less
than PET creating a deficit when the root zone water is
depleted.

The UPF term in equation 11 couples the water
extraction routines with the saturated portion of the model
at each node i. As the water table becomes deeper, less
water will move into the root zone to meet the evaporative
demand. The water available in the root zone will decrease,
since the hydraulic head associated with the drained to
equilibrium water content will decrease as the distance
from the root zone to the water table increases. The term
UPF is the amount of water moving from the water table to
the root zone during the time step and the recharge term, R,
in equation 2 is UPF;/DT for node i.

INFILTRATION

In this model, a rainfall event is assumed to extend from
the time rainfall starts until rainfall has stopped and all
water on the surface has either infiltrated or runs off the
area. The amount of infiltration at each node i is
determined using the Green-Ampt equation with the
assumption that the parameters are a function of the water
table depth and soil type (Green and Ampt, 1911; Mein and
Larson, 1973; Brakensiek, 1977; and Skaggs, 1980). The
equation is given by:

INF, =A, /F, +B, (12)
where

i = node number,

INF; = infiltration rate (cm/d),

A; = coefficient derived from the soil properties and
the initial soil water content (cm /d),

B; = coefficient derived from the soil properties
(cm/d),

F; = cumulative infiltrated water (cm).

The soil types and soil water contents at each node are used
to determine the coefficients A and B by similar procedures
described by Skaggs (1980).

Infiltration at each node is computed by first estimating
the amount of water which can be infiltrated before
ponding. The computed rainfall intensity, RFI;, is
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compared to the Green-Ampt parameter for the node, B;. If
RF]; is less than By, then the rainfall for this time step can
be infiltrated. Otherwise, the amount of infiltrated water at
ponding is given by:
INF. =A,; /(RFIi —Bi) 13
For the remainder of the first time step and each
succeeding step in the rainfall event, the infiltration rate is
computed using equation 12. The amount of time required
to infiltrate a small amount, DR;, is found. DR; is added to
the cumulative infiltration, F;, and a new infiltration rate,
INF;, is computed using equation 12. At the end of the time
step, a water balance is computed at the soil surface as:
RAIN = SUR, +INF, (14)
where SUR,; is the amount of water (cm) added to the soil
surface storage during the time step. The water added to
the surface storage, SUR;, is distributed as retention storage
and detention storage which is eventually surface runoff,
discussed below. The infiltrated water is added to the root
zone layer by layer until the drained to equilibrium amount
for each layer are reached. Once all layers are at drained to
equilibrium, the remaining infiltration is assumed to move
to the water table as vertical recharge during the time step.
The amount moving to the water table provides the linkage
between the infiltration water balance and the Boussinesq
equation (eq. 2).

OVERLAND FLOW

The water on the surface, SUR; (eq. 14), is distributed as
retention and detention storage. Retention storage is the
surface depression storage which will be infiltrated or
evaporated. Detention storage is the water in excess of
retention storage which may move to surrounding nodes.
This water can leave the area via the boundary of the flow
domain as runoff (RO in eq. 1). At the end of each time
step, the water left in retention storage for each node is
PSTOR (eq. 1). The water left in detention storage is
RSTOR (eq. 1). At each time step, the water in detention
storage -is distributed over the area based on the slope of
the water in detention storage between adjacent nodes.
Runoff from the area is the water arriving at the boundary
nodes during the time step.

LATERAL SUBSURFACE DISCHARGE

Subsurface lateral outflow from the region is computed
along each boundary element. Figure 3 shows a section of
a finite element grid along a boundary. The estimate of the
flow perpendicular to boundary side of each element is
computed for each channel section in the area. The
perpendicular from the interior node, k, to the boundary
side ij is assumed to be the flow path for subsurface
discharge. The equation to compute the discharge in m3
along each boundary element is:

Q=-(K,h,(h, -h,)/)bDT (15)

where

Ka,ha = average saturated hydraulic conductivity
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Figure 3-A diagram of the parameters used to compute the
subsurface lateral flow at the boundary.

(m/d) and the average water table elevation
along the line perpendicular to the boundary
side,

hp,hk = water table elevations on the boundary side
and in the interior of the element (m),

L = distance from the boundary side to the
interior node of the element,

b = length of the boundary side (m),

DT = time step (d).

These discharges are summed along each boundary for
lateral outflow from the region.

WATER STORAGE AND AVAILABILITY

Water stored in the profile at any time is estimated as
the amount of shallow groundwater available for drainage
above the channel bottom. Each node in the area is
assigned a boundary channel node by considering the
transect perpendicular to the boundary section. The
drainable storage is computed for each node at the end of
each simulation day. The reference elevation used to
compute the water storage at each node is the main
drainage channel bottom elevation. The drainable water
storage, S, at each node, i, is computed similarly to Badr
(1983) as:

h
S =J f(h)dh, h>e (16)
where
h = water table elevation at node i (m),
e = channel bottom elevation on the transect
containing node i (m),
f(h) = drainable porosity function at node i.

RELATIVE YIELDS

The model calculates wet and dry stress-day indices at
each node in the region using procedures presented by
Hardjoamidjojo and Skaggs (1982) and Evans et al. (1986).
Inputs specify the planting and maturity dates. The total
wet and dry stresses for the growing season are calculated
and related to corn yield using the model developed by
Hardjoamidjojo et al. (1982) for wet stresses and the model
developed by Shaw (1978) for deficient soil water
conditions.

TRANSACTIONS OF THE ASAE



MODEL VERIFICATION

Results predicted by the WATRCOM for transient water
movement to parallel drains were compared to numerical
solutions for drainage (Skaggs, 1973, 1976). This provides
a validation of the saturated portion of the WATRCOM.
Skaggs started with the formulation of the Boussinesq
equation given by:

fh = K(h hx)x -R amn
where
h = water table elevation,
X = spatial coordinate,
t = time,
f = drainable porosity,
K = lateral saturated hydraulic conductivity;
R = vertical recharge rate.
The boundary and initial conditions are written as:
h=hd,x=0andx=L,t>0 (18a)
h=h,,0sx<L,t=0 (18b)

where

hyq = elevation of the boundaries at the drains,

h = initial water table elevation between the drains.
This corresponds to the one-dimensional version of the
saturated portion of WATRCOM (eq. 2). The
nondimensional form of equation 17 is more general than
the dimensional form and was used for these tests.
Equation 17 may be written in nondimensional form
(Skaggs, 1973) as:

H, =(H Hﬁ)[3 -l (19)
where
H = h/hd,
B = x/L,
n o= RLZ/KhdZ,
T = (Khy/fL2)t, and
L = drain spacing.

The nondimensional forms of the boundary and initial
conditions are:

H=1,=0andB=17>0 (20a)

H=D,0<p<1,1=0 (20b)
where D= hy/ hy.

The input parameters for WATRCOM were selected to
obtain nondimensional solutions. The unsaturated portion
of WATRCOM was turned off for these tests. WATRCOM
used a nondimensional time step of 0.00208. The
nondimensional time step for the finite difference
numerical solution of equation 19 was initially 0.001.
There are provisions to increase and decrease the time step
as needed to ensure convergence of the numerical
procedure as the simulation proceeded. The simulation
period was 1 unit of nondimensional time. Simulations
were conducted for boundary conditions corresponding to
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D = 0.2 and D = 0.8; the initial water table elevation was
assumed to be at the surface in all cases.

Figure 4 shows the finite element grid used for the
WATRCOM simulations. Table 1 presents the grid spacing
sizes for each simulation. The methods are coded to
indicate the solution procedure that was used. For example,
ND-0.01 is the nondimensional finite difference method
with a node spacing of 0.01, 3D-0.05 is the finite element
model simulations for WATRCOM with a grid spacing of
0.05 in both the x and y directions, etc.

Predicted midpoint water table heights, H, of
WATRCOM were in close agreement with the finite
difference predictions, method ND-0.01, for both grid
spacings. The largest difference in predicted midpoint H
values was less than 0.01. Table 2 shows the means along
with the root mean square error and the Pearson correlation
coefficient between the finite difference solutions and the
finite element solutions. The root mean square error
(RMSE) and the Pearson correlation coefficient (CORR)
are computed as:

N
RMSE =| Y, [EDMH, -FEMH ] |/N (1)
i=1

and
N
CORR = Y, [(FEMH, - AFEMH)
i=1
(FDMHi - AFDMH )] /(So S, N) (22)
where

N = number of nondimensional time steps,

FDMH; = nondimensional H simulated with the
finite difference method at time step i,

FEMH; = nondimensional H simulated with the
finite element method at time step i,

AFDMH = average nondimensional H simulated
with the finite difference method,

AFEMH = average nondimensional H simulated
with the finite element method,

So = standard deviation of the nondimensional
H simulated with the finite difference
method,

1.0
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Figure 4-The finite element grid for the WATRCOM simulations of
nondimensional water table heights,
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TABLE 1. Nondimensional grid information for comparisons of the
three-dimensional model to the finite difference approximations

Method Dimension Model X DY
ND-0.01 Two Finite 0.01 na*
difference

3D-0.025 Three Finite 0.025 0.025
element

3D-0.05 Three Finite 0.05 0.05
element

* Not applicable.

(Source: Skaggs, 1973)

Ss = standard deviation of the nondimensional
H simulated with the finite element

method.

There was little difference in the predicted flowrates
between any of the solutions for nondimensional time
greater than 0.1. The largest differences in the predicted
discharge rates occurred for T < 0.1. The smallest grid
spacing size, method 3D-0.025, yielded the largest
discharge rate for small times. The differences were on the
order of 20%. Table 2 presents the mean discharge rates,
the root mean square errors, and the correlation coefficients
for the nondimensional Q comparisons. The coarser grid
spacing, method 3D-0.05, predicted smaller mean
discharges than the finer spacings during the early portion
of the simulations for both boundary conditions. However,
during the earlier portions, the simulated discharges from
the WATRCOM solution were still larger than the finite
difference solutions. For the simulation, the differences
between the finite difference and WATRCOM predictions
of discharge were less than 4%.

EXAMPLE APPLICATION: ANALYSIS OF WATER MOVEMENT
NEAR INTERSECTING DRAINAGE DITCHES

Analysis of the performance of controlled drainage
systems is difficult with current models. A typical section
of a watershed in eastern North Carolina was selected to
evaluate the use of WATRCOM characterize the effect of
controlled drainage in fields close to uncontrolled
collectors or main canals. The field ditches are 400 m long
and spaced 100 m apart. Water control structures were
located at the intersection of the field ditches and the
collector canal. A schematic is shown in figure 5. The weir
level or outlet elevation in the control structures was set at

TABLE 2. Nondimensional H and Q comparisons of the finite
element grid spacings for the three-dimensional model to the finite
difference approximations*

D=02 D=038

Method Mean RMSEt  Corr} Mean RMSE} Corrf

-------------------- Nondimensional H--~--r=ememmmannea-
ND-0.01 0.431 - - 0.828 - -
3D-0.025 0.436 0.0023 0.998 0.829 0.001 0.998
3D-0.05 0.436 0.002 0.998 0.829 0.001 0.998

-------------------- Nondimensional Q-----==-=mmmnmmamn-n
ND-0.01 0.365 - - 0.092 - -
3D-0.025 0.367 0.009 0.998 0.096 0.030 0.994
3D-0.05 0.358 0.069 0.995 0.093 0.006 0.998

*  See Table 1 for descriptions of methods. Source: Skaggs, 1973.

¥ Root mean square error between finite element simulated
nondimensional H and finite difference solutions.

i Pearson correlation coefficient between finite element and finite
difference simulated nondimensional H.
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a depth of 0.6 m below the soil surface on day 1 of the
simulation. Water was assumed to be pumped into the
ditches to maintain the water level at the weir elevation.
The collector was uncontrolled and the water level was
assumed to be 2.0 m below the soil surface. The initial
water table was assumed to be 2.0 m below the surface.
The soil is a Rains sandy loam underlain by an
impermeable layer at a depth of 4.0 m. Lateral hydraulic
saturated conductivity is 5.0 m/d and drainable porosity is
assumed to be constant at 0.1. The unsaturated data
required for the model simulations are given by Skaggs
(1980). WATRCOM was used to simulate this scenario
using 1984 weather data from North Carolina. The weather
data are summarized by months in Table 3.

Midpoint water table depths at distances of 25 m and
250 m from the collector ditch are plotted along with the
daily rainfall distribution in figure 6. Drainage to the
collector ditch influenced the water table response to the
controlled field ditches. The water table responded to
rainfall and ET throughout the year at both locations.
However, drainage to the collector ditch caused the water
tables near the collector ditch to remain approximately 0.6
m below those simulated at the 250 m transect. A two-
dimensional analysis can be used reliably to determine
water table response to controlled drainage or subirrigation
at transects far removed from the collector ditch. However,
seepage to the collector ditch is significant; it influences
water tables close to the collector and the amount of water
that must be pumped to maintain the ditch water level.
Prediction of the behavior of the system near the
intersection of the ditches requires a three-dimensional
analysis which can be accomplished by WATRCOM.

SUMMARY AND CONCLUSIONS

A water management model, WATRCOM, for
watershed scale drainage systems was developed. The
model can be used to analyze the effect of channel water
level control on soil water conditions and water
conservation in drained agricultural watersheds. The model
is based on water balances in subregions of the watershed.
Components of the model consist of a finite element
solution of the Boussinesq equation to characterize water
movement in the saturated zone, a one-dimensional
analysis in the unsaturated zone at each node in the finite

100 M

N

UNCONTROLLED COLLECTOR CANAL

Figure 5-Schematic of controlled field ditches emptying in an
uncontrolled collector canal.
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TABLE 3. Monthly summary of the 1984 weather data

Month Pet Rain
.......... 011 | Cre——

1 15 63

2 37 134

3 56 118

4 79 88

5 136 183

6 172 58

7 136 250

8 145 87

9 96 124

10 71 8
11 32 24
12 27 37
Total 1002 1174

runoff. All components are coupled at each time step.

The model simulation procedures were tested using
published solutions for parallel drainage to open ditches.
WATRCOM predictions of water table height were within
1% of the published finite difference solutions for all cases
considered. Water table height predictions showed little
sensitivity to grid spacing size. Predicted discharge rates
were acceptable with some deviations from published
solutions occurring during the early portion of the
simulations. Differences in discharge rates over the
simulation were less than 4%. Finer finite element grid
spacings tended to increase predicted discharge rates.
These discharge rates were larger than published solutions
obtained by finite difference methods during the early part
of the drainage event.

Water table response near the intersection of field and
collector ditches was simulated for one year of
climatological record to illustrate the need for a three-
dimensional analysis in some watershed problems. The
water table in areas of the field close to the collector ditch
was influenced by both the field and collector ditches
making a two-dimensional analysis unsatisfactory for this
situation.
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Figure 6—-A comparison of midpoint water table response to
controlled field drainage ditches intersecting an uncontrolled
collector ditch.
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